SYLLABUS

1. Number and Name: 11:117:495 - SURFACE WATER QUALITY MODELING

- 2. Credits and contact hours: 3 credits, 2-80 minute lecture periods per week
- **3. Instructor:** Christopher G. Uchrin
- 4. Required Text: none
 Reference Texts: Chapra, S.C., Surface Water-Quality Modeling, McGraw-Hill, NY, 1997, 844 pp.
 Thomann, R.V., and J.A. Mueller, Principles of Surface Water Quality Modeling and Control, Harper & Row, NY, 1987, 644 pp. Schnoor, J.L., Environmental Modeling: Fate and Transport of Pollutants in Water, Air, and Soil, John Wiley & Sons, NY, 1996, 682 pp.

5. Specific Course Information

- **a. Catalog Description:** Formulation and solution of mathematical models as applied to surface water quality systems. Techniques of simulation and validation using case studies.
- **b. Prerequisites:** 11:375:423
- c. Course Type: Technical elective

6. Course Goals

- **a. Specific Instructional Outcomes:** Students will be versed in the principles of surface water hydrology and pollution. Student problem solving skills will be enhanced through the use of homework projects and an engineering project involving considerable analytical and numerical skills.
- b. Specific Student Outcomes addressed by the course include:

e. Ability to identify, formulate and solve engineering problems

Instructional Activity: Successful completion of design project focused on surface a water pollution application

Assessment Activity: Individual grading of student projects focused on:

- 5. Theoretical development and application
- 6. Technical accuracy
- 7. Conclusions
- 8. Presentation

g. Ability to communicate effectively

Instructional Activity: Successful completion of design project focused on surface a water pollution application

Assessment Activity: Individual grading of student projects

k. Ability to use techniques, skills and modern engineering tools necessary for engineering practice

Instructional Activity: Successful completion of design project and homework assignments incorporating advanced mathematical (computer) modeling techniques focused on surface water quality

Assessment Activity: Individual grading of student projects and homework assignments focused on using advanced engineering tools specifically for technical accuracy and visuals

7. Topics:

1-2	I. INTRODUCTION: Definitions; Deterministic, phenomenological and stochastic models; modeling flow chart; Conceptual models; Simulation versus modeling	
3	II THE MASS BALANCE	Definition: Batch systems and applications
4-5	Completely mixed flow syste	ms
6	Cells in series	
7	Ideal plug-flow systems	
8-10	Plug-flow with dispersion systems	
11	III. MODEL ERROR ASSES	SSMENT AND RELIABILTY: Comparison
	of model predictions to true values; Diagnostic checks; quantification of	
	error; Estimation of prediction reliability	
12	IV. MULTI-DIMENSIONAL SYSTEMS: Total systems mass balance	
13	Two-dimensional steady-state application	
14-15	Finite section approximations/finite differences	
16-17	V. MULTI-COMPONENT COUPLED SYSTEMS MODELS: Biochemical	
	Oxygen Demand (BOD) – Dissolved Oxygen (DO) in streams	
18	Sediment oxygen demand	
19	Algal photosynthesis and respiration	
20-21	Lake eutrophication modeling	
22	Introduction to and applications of QUAL2K	
23	BOD-DO dynamics in dispersive systems	
24-26	Ecosystem (food-web) models	
Grading:	Homework	25%
-	Exam 1	20%
	Exam 2	20%
	Final Exam/project report	35%
Prepared by:	Christopher Uchrin 10/03/2017	